
 

 

 

 

WHITE PAPER 

 

OVER STONES 

NFTs COLLECTION 

https://overstones.org 
 

 

 

 

 

 

 

 

 

 

 
 

https://overstones.org/


It seems very necessary Necessity of transforming ancient objects and historical 
artifacts into NFT. 
Many historical artifacts are fragile and susceptible to damage from environmental 
factors, such as light, temperature,humidity and battles.The Nazis ransacked Europe’s 
museums and galleries during World War II. In Libya, historical sites were vandalised, 
looted and destroyed. The Taliban used high explosives to eradicate virtually every 
trace of the statues of Buddha at Bamiyan in Afghanistan. 
Today, the only truly safe place to preserve our cultural heritage is blockchain. To make 
our shared culture preservable, we need to make it shareable, and NFTs give us this 
ability to introduce future generations to the civilization of our ancestors. 
 
Overstones is a NFTcollection of 200 ancient stones (made by man)  dating back to the 

millennium BC each of which is named after one of the cryptocurrencies. 

This collection shows a combination of human civilizations in the distant millennia and the 

blockchain age Which are combined in the form of 200 unique NFTs 

The ingredients of these stones are a combination of gold, Silver and Kaolinite And each of 

these stones are unique and different from each other in terms of weight and volume and 

engraved cuneiform lines. 

overstones, has chosen Polygon chain for its collection because Polygon ,the most widely used 

Ethereum scaling ecosystem that offers EVM compatibility and an ultimate user experience with 

fast transactions at near-zero gas fees and adopted by the biggest projects and Community 

support. 

Polygon is the most proven scaling solution in Web3. 

Deployment onto EVM without changes in code ,Allows developers to focus on improving code 

(in Polygon zkEVM) rather than re-writing it.Ethereum security inherited in L2 with the additional 

benefit of L2 batching for scaling. 

 

Overstones has chosen the ERC1155 standard and multiples for its collection because the 

monopolization of NFTs historical artifacts, which are considered a world heritage, by one 

person or one government does not seem logical for many reasons. the community of ancient 

NFTs holders must be racially diverse with a wide geographical spread as this is the legacy that 

must be properly passed down to future generations. 

 

Overstones is very obsessive in choosing cryptocurrencies. So far, many authentic and valuable 

currencies have been named (150 Item) and minted. We intend to reserve some slots for 

emerging currencies that will prove their worth in the future.Of course , they must have effective 

functionality in blockchain development , security , a strong community of investors and fans 

and other related matters.This policy will greatly contribute to the attractiveness of the collection 

and the credibility of its society 

 

 

 



SMART CONTRACT 

BeaconProxy.sol 
 
 
// SPDX-License-Identifier: MIT 
 
pragma solidity >=0.6.0 <0.8.0; 
 
import "./Proxy.sol"; 
import "../utils/Address.sol"; 
import "./IBeacon.sol"; 
 
/ 
* @dev This contract implements a proxy that gets the implementation address 
for each call from a {UpgradeableBeacon}. 
* 
* The beacon address is stored in storage slot 
uint256(keccak256('eip1967.proxy.beacon')) - 1 

, so that it doesn't 
* conflict with the storage layout of the implementation behind the proxy. 
* 
* _Available since v3.4._ 
*/ 
contract BeaconProxy is Proxy { 
    / 
     * @dev The storage slot of the UpgradeableBeacon contract which defines the 
implementation for this proxy. 
     * This is bytes32(uint256(keccak256('eip1967.proxy.beacon')) - 1)) and is validated 
in the constructor. 
     */ 
    bytes32 private constant _BEACON_SLOT = 
0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50; 
 
    / 
     * @dev Initializes the proxy with 
beacon 

. 
     * 
     * If 
data 

is nonempty, it's used as data in a delegate call to the implementation returned by the 
beacon. This 
     * will typically be an encoded function call, and allows initializating the storage of the 
proxy like a Solidity 
     * constructor. 



     * 
     * Requirements: 
     * 
     * - 
beacon 

must be a contract with the interface {IBeacon}. 
     */ 
    constructor(address beacon, bytes memory data) public payable { 
        assert(_BEACON_SLOT == bytes32(uint256(keccak256("eip1967.proxy.beacon")) 
- 1)); 
        _setBeacon(beacon, data); 
    } 
 
    / 
     * @dev Returns the current beacon address. 
     */ 
    function _beacon() internal view virtual returns (address beacon) { 
        bytes32 slot = _BEACON_SLOT; 
        // solhint-disable-next-line no-inline-assembly 
        assembly { 
            beacon := sload(slot) 
        } 
    } 
 
    / 
     * @dev Returns the current implementation address of the associated beacon. 
     */ 
    function _implementation() internal view virtual override returns (address) { 
        return IBeacon(_beacon()).implementation(); 
    } 
 
    / 
     * @dev Changes the proxy to use a new beacon. 
     * 
     * If 
data 

is nonempty, it's used as data in a delegate call to the implementation returned by the 
beacon. 
     * 
     * Requirements: 
     * 
     * - 
beacon 

must be a contract. 
     * - The implementation returned by 
beacon 



must be a contract. 

     */ 

    function _setBeacon(address beacon, bytes memory data) internal virtual { 

        require( 

            Address.isContract(beacon), 

            "BeaconProxy: beacon is not a contract" 

        ); 

        require( 

            Address.isContract(IBeacon(beacon).implementation()), 

            "BeaconProxy: beacon implementation is not a contract" 

        ); 

        bytes32 slot = _BEACON_SLOT; 

 

        // solhint-disable-next-line no-inline-assembly 

        assembly { 

            sstore(slot, beacon) 

        } 

 

        if (data.length > 0) { 

            Address.functionDelegateCall(_implementation(), data, "BeaconProxy: function 

call failed"); 

        } 

    } 

} 

 

 

 

 

 

 

 

 

 

 

 

 



Address.sol 
 
 
// SPDX-License-Identifier: MIT 
 
pragma solidity >=0.6.2 <0.8.0; 
 
/ 
* @dev Collection of functions related to the address type 
*/ 
library Address { 
    / 
     * @dev Returns true if 
account 

is a contract. 
     * 
     * [IMPORTANT] 
     * ==== 
     * It is unsafe to assume that an address for which this function returns 
     * false is an externally-owned account (EOA) and not a contract. 
     * 
     * Among others, 
isContract 

will return false for the following 
     * types of addresses: 
     * 
     *  - an externally-owned account 
     *  - a contract in construction 
     *  - an address where a contract will be created 
     *  - an address where a contract lived, but was destroyed 
     * ==== 
     */ 
    function isContract(address account) internal view returns (bool) { 
        // This method relies on extcodesize, which returns 0 for contracts in 
        // construction, since the code is only stored at the end of the 
        // constructor execution. 
 
        uint256 size; 
        // solhint-disable-next-line no-inline-assembly 
        assembly { size := extcodesize(account) } 
        return size > 0; 
    } 
 
    / 
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to 
     * `recipient`, forwarding all available gas and reverting on errors. 



     * 
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost 
     * of certain opcodes, possibly making contracts go over the 2300 gas limit 
     * imposed by `transfer`, making them unable to receive funds via 
     * `transfer`. {sendValue} removes this limitation. 
     * 
     * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-
now/[Learn more]. 
     * 
     * IMPORTANT: because control is transferred to `recipient`, care must be 
     * taken to not create reentrancy vulnerabilities. Consider using 
     * {ReentrancyGuard} or the 
     * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-
checks-effects-interactions-pattern[checks-effects-interactions pattern]. 
     */ 
    function sendValue(address payable recipient, uint256 amount) internal { 
        require(address(this).balance >= amount, "Address: insufficient balance"); 
 
        // solhint-disable-next-line avoid-low-level-calls, avoid-call-value 
        (bool success, ) = recipient.call{ value: amount }(""); 
        require(success, "Address: unable to send value, recipient may have 
reverted"); 
    } 
 
    / 
     * @dev Performs a Solidity function call using a low level 
call 

. A 
     * plain`call` is an unsafe replacement for a function call: use this 
     * function instead. 
     * 
     * If 
target 

reverts with a revert reason, it is bubbled up by this 
     * function (like regular Solidity function calls). 
     * 
     * Returns the raw returned data. To convert to the expected return value, 
     * use https://solidity.readthedocs.io/en/latest/units-and-global-
variables.html?highlight=abi.decode#abi-encoding-and-decoding-
functions[`abi.decode`]. 
     * 
     * Requirements: 
     * 
     * - 
target 

must be a contract. 
     * - calling 

https://eips.ethereum.org/EIPS/eip-1884%5BEIP1884%5D
https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/%5BLearn
https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/%5BLearn
https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions
https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions
https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[abi.decode]
https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[abi.decode]
https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[abi.decode]


target 

with 
data 

must not revert. 

     * 

     * _Available since v3.1._ 

     */ 

    function functionCall(address target, bytes memory data) internal returns (bytes 

memory) { 

      return functionCall(target, data, "Address: low-level call failed"); 

    } 

/ 
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], 
but with 
     * `errorMessage` as a fallback revert reason when `target` reverts. 
     * 
     * _Available since v3.1._ 
     */ 
    function functionCall(address target, bytes memory data, string memory 
errorMessage) internal returns (bytes memory) { 
        return functionCallWithValue(target, data, 0, errorMessage); 
    } 
 
    / 
     * @dev Same as {xref-Address-functionCall-address-bytes-}[ 
functionCall 

], 
     * but also transferring 
value 

wei to 
target 

. 
     * 
     * Requirements: 
     * 
     * - the calling contract must have an ETH balance of at least 
value 

. 
     * - the called Solidity function must be 
payable 

. 
     * 
     * _Available since v3.1._ 
     */ 
    function functionCallWithValue(address target, bytes memory data, uint256 value) 
internal returns (bytes memory) { 
        return functionCallWithValue(target, data, value, "Address: low-level call with value 



failed"); 
    } 
 
    / 
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-
}[`functionCallWithValue`], but 
     * with `errorMessage` as a fallback revert reason when `target` reverts. 
     * 
     * _Available since v3.1._ 
     */ 
    function functionCallWithValue(address target, bytes memory data, uint256 
value, string memory errorMessage) internal returns (bytes memory) { 
        require(address(this).balance >= value, "Address: insufficient balance for 
call"); 
        require(isContract(target), "Address: call to non-contract"); 
 
        // solhint-disable-next-line avoid-low-level-calls 
        (bool success, bytes memory returndata) = target.call{ value: value }(data); 
        return _verifyCallResult(success, returndata, errorMessage); 
    } 
 
    / 
     * @dev Same as {xref-Address-functionCall-address-bytes-}[ 
functionCall 

], 
     * but performing a static call. 
     * 
     * _Available since v3.3._ 
     */ 
    function functionStaticCall(address target, bytes memory data) internal view returns 
(bytes memory) { 
        return functionStaticCall(target, data, "Address: low-level static call failed"); 
    } 
 
    / 
     * @dev Same as {xref-Address-functionCall-address-bytes-string-
}[`functionCall`], 
     * but performing a static call. 
     * 
     * _Available since v3.3._ 
     */ 
    function functionStaticCall(address target, bytes memory data, string memory 
errorMessage) internal view returns (bytes memory) { 
        require(isContract(target), "Address: static call to non-contract"); 
 
        // solhint-disable-next-line avoid-low-level-calls 
        (bool success, bytes memory returndata) = target.staticcall(data); 



        return _verifyCallResult(success, returndata, errorMessage); 
    } 
 
    / 
     * @dev Same as {xref-Address-functionCall-address-bytes-}[ 
functionCall 

], 
     * but performing a delegate call. 
     * 
     * _Available since v3.4._ 
     */ 
    function functionDelegateCall(address target, bytes memory data) internal returns 
(bytes memory) { 
        return functionDelegateCall(target, data, "Address: low-level delegate call failed"); 
    } 
 
    /** 
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[ 
functionCall 

], 

     * but performing a delegate call. 

     * 

     * _Available since v3.4._ 

     */ 

    function functionDelegateCall(address target, bytes memory data, string memory 

errorMessage) internal returns (bytes memory) { 

        require(isContract(target), "Address: delegate call to non-contract"); 

 

        // solhint-disable-next-line avoid-low-level-calls 

        (bool success, bytes memory returndata) = target.delegatecall(data); 

        return _verifyCallResult(success, returndata, errorMessage); 

    } 

function _verifyCallResult(bool success, bytes memory returndata, string memory 

errorMessage) private pure returns(bytes memory) { 

        if (success) { 

            return returndata; 

        } else { 

            // Look for revert reason and bubble it up if present 

            if (returndata.length > 0) { 

                // The easiest way to bubble the revert reason is using memory via assembly 

 

                // solhint-disable-next-line no-inline-assembly 

                assembly { 

                    let returndata_size := mload(returndata) 

                    revert(add(32, returndata), returndata_size) 



                } 

            } else { 

                revert(errorMessage); 

            } 

        } 

    } 

} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Proxy.sol 

 
 
// SPDX-License-Identifier: MIT 
 
pragma solidity >=0.6.0 <0.8.0; 
 
/ 
* @dev This abstract contract provides a fallback function that delegates all calls 
to another contract using the EVM 
* instruction `delegatecall`. We refer to the second contract as the 
_implementation_ behind the proxy, and it has to 
* be specified by overriding the virtual {_implementation} function. 
* 
* Additionally, delegation to the implementation can be triggered manually 
through the {_fallback} function, or to a 
* different contract through the {_delegate} function. 
* 
* The success and return data of the delegated call will be returned back to the 
caller of the proxy. 
*/ 
abstract contract Proxy { 
    / 
     * @dev Delegates the current call to 
implementation 

. 
     * 
     * This function does not return to its internall call site, it will return directly to the 
external caller. 
     */ 
    function _delegate(address implementation) internal virtual { 
        // solhint-disable-next-line no-inline-assembly 
        assembly { 
            // Copy msg.data. We take full control of memory in this inline assembly 
            // block because it will not return to Solidity code. We overwrite the 
            // Solidity scratch pad at memory position 0. 
            calldatacopy(0, 0, calldatasize()) 
 
            // Call the implementation. 
            // out and outsize are 0 because we don't know the size yet. 
            let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0) 
 
            // Copy the returned data. 
            returndatacopy(0, 0, returndatasize()) 
 
            switch result 



            // delegatecall returns 0 on error. 
            case 0 { revert(0, returndatasize()) } 
            default { return(0, returndatasize()) } 
        } 
    } 
 
    / 
     * @dev This is a virtual function that should be overriden so it returns the 
address to which the fallback function 
     * and {_fallback} should delegate. 
     */ 
    function _implementation() internal view virtual returns (address); 
 
    / 
     * @dev Delegates the current call to the address returned by 
_implementation() 

. 
     * 
     * This function does not return to its internall call site, it will return directly to the 
external caller. 
     */ 
    function _fallback() internal virtual { 
        _beforeFallback(); 
        _delegate(_implementation()); 
    } 
 
    / 
     * @dev Fallback function that delegates calls to the address returned by 
`_implementation()`. Will run if no other 
     * function in the contract matches the call data. 
     */ 
    fallback () external payable virtual { 
        _fallback(); 
    } 
 
    / 
     * @dev Fallback function that delegates calls to the address returned by 
_implementation() 

. Will run if call data 
     * is empty. 
     */ 
    receive () external payable virtual { 
        _fallback(); 
    } 
 
    /** 



     * @dev Hook that is called before falling back to the implementation. Can happen as 
part of a manual 
_fallback 

 
     * call, or as part of the Solidity 
fallback 

or 
receive 

functions. 
     * 
     * If overriden should call 
super._beforeFallback() 

. 

     */ 

    function _beforeFallback() internal virtual { 

    } 

} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



IBeacon.sol 

 

 

// SPDX-License-Identifier: MIT 

 

pragma solidity >=0.6.0 <0.8.0; 

 

/ 

* @dev This is the interface that {BeaconProxy} expects of its beacon. 

*/ 

interface IBeacon { 

    / 

     * @dev Must return an address that can be used as a delegate call target. 

     * 

     * {BeaconProxy} will check that this address is a contract. 

     */ 

    function implementation() external view returns (address); 

} 

 

Settings 
{ 

  "remappings": [], 

  "optimizer": { 

    "enabled": true, 

    "runs": 200 

  }, 

  "evmVersion": "istanbul", 

  "libraries": {}, 

  "outputSelection": { 

    "*": { 

      "*": [ 

        "evm.bytecode", 

        "evm.deployedBytecode", 

        "devdoc", 

        "userdoc", 

        "metadata", 

        "abi" 

      ] 

    } 

  } 

} 

 



 

 

 

Social Networks 

 

https://www.linkedin.com/in/overstones 
 

https://www.reddit.com/user/overstones 
 

https://github.com/overstones 
 

https://discord.com/over_stones 
 

https://twitter.com/over_stones 
 

https://www.instagram.com/over_stones 
 

https://t.me/over_stones 
 

https://medium.com/@metagallery.nft 

https://www.linkedin.com/in/overstones
https://www.reddit.com/user/overstones
https://github.com/overstones
https://discord.com/over_stones
https://twitter.com/over_stones
https://www.instagram.com/over_stones
https://t.me/over_stones
https://medium.com/@metagallery.nft

